Analysis on Manifolds (WBMA013-05)- Final Exam

Tuesday 26 January 2021, 8:30h-12:30h

This exam consists of **3** problems.

Usage of the theory and examples from the lecture notes is allowed with the only

exception of the results of Exercise 4.1.13 from the lecture notes. Give a precise reference to the theory and/or exercises you use for solving the problems. You get 10 points for free.

Problem 1. (9 + 15 + 6 = 30 points)

Let $f(x, y, z) = x^2 + y^2 + z^2$ and let $\sigma : \mathbb{R}^2 \to \mathbb{R}^3$ be the map

$$\sigma(u,v) = \frac{1}{u^2 + v^2 + 1} \left(2u, 2v, u^2 + v^2 - 1 \right). \tag{1}$$

- (a) If $X = z \frac{\partial}{\partial x} x \frac{\partial}{\partial z}$, compute $\iota_X df$.
- (b) Verify that $d(f \circ \sigma) = \sigma^* df$ by computing separately both terms.
- (c) Does $du \wedge \sigma^* df$ define a volume form on \mathbb{R}^2 ? If so, is it positively oriented with respect to the standard euclidean basis? Justify your answer.

Problem 2. (6 + 6 + 6 + 6 + 6 = 30 points)

Recall that we can identify the space Mat(2, \mathbb{R}) of 2 × 2-matrices with \mathbb{R}^4 by associating the matrix $X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$ with the point $(x_{11}, x_{12}, x_{21}, x_{22}) \in \mathbb{R}^4$.

(a) Show that the set

 $SL(2,\mathbb{R}) = \{A \in Mat(2,\mathbb{R}) \mid det A = 1\}$

is a 3-dimensional smooth submanifold of $Mat(2, \mathbb{R})$. *Hint: use the identification between matrices and* \mathbb{R}^4 .

(b) Let $e \in Mat(2, \mathbb{R})$ denote the identity matrix. Show that

 $T_e SL(2, \mathbb{R}) = \{A \in Mat(2, \mathbb{R}) \mid tr A = 0\},\$

where tr*A* denotes the matrix trace, i.e., the sum of the diagonal entries of *A*.

(c) Let $\iota: SL(2, \mathbb{R}) \to SL(2, \mathbb{R})$ be the map $\iota(A) = A^{-1}$. Show that ι is smooth.

(d) Show that $d\iota_e: T_e SL(2, \mathbb{R}) \to T_e SL(2, \mathbb{R})$ is given by $d\iota_e(A) = -A$.

(e) Show that $SL(2,\mathbb{R})$ is a Lie group and give its Lie algebra.

<u>Problem</u> 3. (6 + 6 + 10 + 8 = 30 points)

In this problem we are going to prove the following fixed point theorem.

Theorem 1. Let $D_n := \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$ denote the closed unit disk in \mathbb{R}^n . Any smooth map $g: D_n \to D_n$ has a fixed point, that is, $\exists p \in D_n$ such that g(p) = p.

We will proceed by first showing another result.

Theorem 2. Let N be a compact n-dimensional submanifold of \mathbb{R}^n with non-empty boundary ∂N . Then, there is no differentiable map $f : N \to \partial N$ for which every boundary point is a fixed point, that is, for which f(p) = p for all $p \in \partial N$.

Let $\Omega = dx^1 \wedge \cdots \wedge dx^n$ denote the standard volume form on *N*, that is, the restriction of the standard volume form on \mathbb{R}^n to *N*, and *X* be an outward-pointing vector field on ∂N .

- (a) Show that $\omega = \iota_X \Omega$ is a closed non-vanishing form on ∂N .
- (b) Show that if there is *f* such that f(p) = p for all $p \in \partial N$, then $f^*\omega$ is closed.
- (c) Prove Theorem 2. *Hint: use integration to get a contradiction.*
- (d) Prove Theorem 1. Hint: by contradiction, consider $f(p) = \frac{p-g(p)}{\|p-g(p)\|}$...