Analysis on Manifolds (WBMA013-05)- Final Exam

Tuesday 26 January 2021, 8:30h-12:30h

This exam consists of $\mathbf{3}$ problems.
Usage of the theory and examples from the lecture notes is allowed with the only exception of the results of Exercise 4.1.13 from the lecture notes. Give a precise reference to the theory and/or exercises you use for solving the problems. You get 10 points for free.

Problem 1. ($9+15+6=30$ points $)$

Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$ and let $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the map

$$
\begin{equation*}
\sigma(u, v)=\frac{1}{u^{2}+v^{2}+1}\left(2 u, 2 v, u^{2}+v^{2}-1\right) \tag{1}
\end{equation*}
$$

(a) If $X=z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}$, compute $\iota_{X} d f$.
(b) Verify that $d(f \circ \sigma)=\sigma^{*} d f$ by computing separately both terms.
(c) Does $d u \wedge \sigma^{*} d f$ define a volume form on \mathbb{R}^{2} ? If so, is it positively oriented with respect to the standard euclidean basis? Justify your answer.

Problem 2. $(6+6+6+6+6=30$ points $)$

Recall that we can identify the space $\operatorname{Mat}(2, \mathbb{R})$ of 2×2-matrices with \mathbb{R}^{4} by associating the matrix $X=\left(\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right)$ with the point $\left(x_{11}, x_{12}, x_{21}, x_{22}\right) \in \mathbb{R}^{4}$.
(a) Show that the set

$$
\operatorname{SL}(2, \mathbb{R})=\{A \in \operatorname{Mat}(2, \mathbb{R}) \mid \operatorname{det} A=1\}
$$

is a 3-dimensional smooth submanifold of $\operatorname{Mat}(2, \mathbb{R})$.
Hint: use the identification between matrices and \mathbb{R}^{4}.
(b) Let $e \in \operatorname{Mat}(2, \mathbb{R})$ denote the identity matrix. Show that

$$
T_{e} \mathrm{SL}(2, \mathbb{R})=\{A \in \operatorname{Mat}(2, \mathbb{R}) \mid \operatorname{tr} A=0\},
$$

where $\operatorname{tr} A$ denotes the matrix trace, i.e., the sum of the diagonal entries of A.
(c) Let $\iota: \operatorname{SL}(2, \mathbb{R}) \rightarrow \operatorname{SL}(2, \mathbb{R})$ be the map $\iota(A)=A^{-1}$. Show that ι is smooth.
(d) Show that $d \iota_{e}: T_{e} \mathrm{SL}(2, \mathbb{R}) \rightarrow T_{e} \mathrm{SL}(2, \mathbb{R})$ is given by $d \iota_{e}(A)=-A$.
(e) Show that $S L(2, \mathbb{R})$ is a Lie group and give its Lie algebra.

Problem 3. $(6+6+10+8=30$ points $)$
In this problem we are going to prove the following fixed point theorem.
Theorem 1. Let $D_{n}:=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq 1\right\}$ denote the closed unit disk in \mathbb{R}^{n}. Any smooth map $g: D_{n} \rightarrow D_{n}$ has a fixed point, that is, $\exists p \in D_{n}$ such that $g(p)=p$.

We will proceed by first showing another result.
Theorem 2. Let N be a compact n-dimensional submanifold of \mathbb{R}^{n} with non-empty boundary ∂N. Then, there is no differentiable map $f: N \rightarrow \partial N$ for which every boundary point is a fixed point, that is, for which $f(p)=p$ for all $p \in \partial N$.

Let $\Omega=d x^{1} \wedge \cdots \wedge d x^{n}$ denote the standard volume form on N, that is, the restriction of the standard volume form on \mathbb{R}^{n} to N, and X be an outward-pointing vector field on ∂N.
(a) Show that $\omega=\iota_{X} \Omega$ is a closed non-vanishing form on ∂N.
(b) Show that if there is f such that $f(p)=p$ for all $p \in \partial N$, then $f^{*} \omega$ is closed.
(c) Prove Theorem 2

Hint: use integration to get a contradiction.
(d) Prove Theorem 1 .

Hint: by contradiction, consider $f(p)=\frac{p-g(p)}{\|p-g(p)\|} \ldots$

